Get out homework from yesterday and Warm Up on the problems below. Target Check on multiplying and dividing fractions tomorrow.

Classwork - Dividing Fractions and Mixed Numbers

Warm Up: Multiply

A)
$$-\frac{3}{9} \cdot \frac{3}{7}$$

B) $-\frac{1}{6} \cdot -15$
 $-\frac{1}{2} \cdot -\frac{1}{5} \cdot \frac{3}{2} \cdot \frac{3}{4} \cdot 10\frac{1}{3}$
 $-\frac{1}{2} \cdot -\frac{1}{5} \cdot \frac{3}{2} \cdot \frac{3}{4} \cdot \frac{3}{10} \cdot \frac{3}{10}$

Multiply. Write in simplest form. SHOW WORK

$$1.\frac{3}{5} \times \frac{1}{2}$$

3/10

$$2.\frac{3}{8} \times \frac{2}{7}$$

$$3. \frac{10}{1} \times \frac{1}{3} = \frac{8}{3} \frac{10}{3}$$

$$3\frac{10}{3}$$

4.
$$-\frac{5}{8} \times \frac{7}{4}$$

$$6. \frac{1}{11} \times \left(-\frac{1}{1}\right)$$

$$\begin{pmatrix} 9 \\ \hline 10 \end{pmatrix}$$

9.
$$3\frac{1}{5} \times \frac{3}{8}$$

$$10.\,\frac{2}{3}\times\left(-4\,\frac{1}{3}\right)$$

$$\frac{2}{3} \cdot -\frac{13}{3}$$

$$-\frac{26}{9} = \left(-\frac{28}{9}\right)$$

11.
$$\frac{15}{1} \times 2\frac{2}{5}$$

12.
$$5\frac{1}{2} \times 4$$

13.
$$5\frac{1}{4} \times \left(-4\frac{2}{3}\right)$$
7-21 - 49

$$\frac{246}{7} \cdot \frac{9}{8} = \frac{18}{7} \cdot 2\frac{1}{7}$$

18. GASOLINE Jamal filled his gas tank and then used $\frac{7}{16}$ of the tank for traveling to visit his grandfather. He then used ¹/₃ of the remaining gas in the tank to run errands around town. What fraction of the tank is filled with gasoline?

19. HIKING A hiker averages $6\frac{3}{8}$ kilometers per hour. If he hikes for $5\frac{1}{3}$ hours, how many kilometers does he hike?

Real-World Link

Oranges Deandre has three oranges and each orange is divided evenly into fourths. Complete the steps below to find $3 \div \frac{1}{4}$.

Step 1 Draw three oranges. The first one is drawn for you.

Step 2 Imagine you cut each orange into fourths.

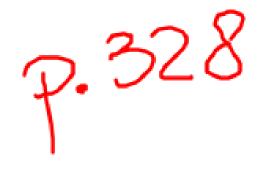
Draw the slices for each orange.

So $3 \div \frac{1}{4} = 12$. Deandre will have orange slices.

1. Find $3 \div \frac{1}{2}$. Use a diagram.

2. What is true about $3 \div \frac{1}{2}$ and 3×2 ?

Divide Fractions


Words To divide by a fraction, multiply by its multiplicative inverse, or reciprocal.

Examples Numbers

$$\frac{7}{8} \div \frac{3}{4} = \frac{7}{8} \cdot \frac{4}{3}$$

Algebra

$$\frac{7}{8} \div \frac{3}{4} = \frac{7}{8} \cdot \frac{4}{3}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}, \text{ where } b, c, d \neq 0$$

Dividing 3 by $\frac{1}{4}$ is the same as multiplying 3 by the reciprocal of $\frac{1}{4}$, which is 4.

reciprocals
$$3 \div \frac{1}{4} = 12$$

$$3 \cdot 4 = 12$$
same result

Is this pattern true for any division expression?

Consider
$$\frac{7}{8} \div \frac{3}{4}$$
, which can be rewritten as $\frac{\frac{7}{8}}{\frac{3}{4}}$.

$$\frac{\frac{7}{8}}{\frac{3}{4}} = \frac{\frac{7}{8} \times \frac{4}{3}}{\frac{3}{4} \times \frac{4}{3}}$$

 $\frac{\frac{7}{8}}{\frac{3}{4}} = \frac{\frac{7}{8} \times \frac{4}{3}}{\frac{3}{4} \times \frac{4}{3}}$ Multiply the numerator and denominator by the reciprocal of $\frac{3}{4}$, which is $\frac{4}{3}$.

$$=\frac{\frac{7}{8} \times \frac{4}{3}}{1}$$

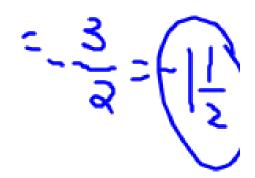
$$=\frac{7}{8} \times \frac{4}{3}$$

$$=\frac{7}{8} \times \frac{4}{3}$$

So,
$$\frac{7}{8} \div \frac{3}{4} = \frac{7}{8} \times \frac{4}{3}$$
. The pattern is true in this case.

Examples

1. Find
$$\frac{1}{3} \div 5$$
.
$$\frac{1}{3} \div 5 = \frac{1}{3} \div \frac{5}{4}$$
 A whole number can be writt


$$= \frac{1}{3} \times \frac{1}{5}$$
 Multiply by the reciprocal of $\frac{5}{1}$, which is $\frac{1}{5}$.
$$= \frac{1}{15}$$
 Multiply.

2. Find $\frac{3}{4} \div \left(-\frac{1}{2}\right)$. Write in simplest form.

Estimate
$$1 \div \left(-\frac{1}{2}\right) =$$

$$\frac{3}{4} \div \left(-\frac{1}{2}\right) = \frac{3}{4} \cdot \left(-\frac{2}{1}\right)$$
Multiply by the reciprocal of $-\frac{1}{2}$, which is $-\frac{2}{1}$.
$$= \frac{3}{4} \cdot \left(-\frac{2}{1}\right)$$
Divide 4 and 2 by their GCF, 2.
$$= -\frac{3}{2} \text{ or } -1\frac{1}{2}$$
Multiply.

Check for Reasonableness $-1\frac{1}{2} \approx -2$ \checkmark

Got it? Do these problems to find out.

Divide. Write in simplest form.

a.
$$\frac{3}{4} \div \frac{1}{4}$$

$$\frac{3}{4} \div \frac{1}{4} = \frac{3}{1} \div \frac{3}{1} = \frac$$

Divide Mixed Numbers

To divide by a mixed number, first rename the mixed number as a fraction greater than one. Then multiply the first fraction by the reciprocal, or multiplicative inverse, of the second fraction.

Example

3. Find $\frac{2}{3} \div 3\frac{1}{3}$. Write in simplest form.

$$\frac{2}{3} \div 3\frac{1}{3} = \frac{2}{3} \div \frac{10}{3}$$
 Rename $3\frac{1}{3}$ a fraction greater than one.
$$= \frac{2}{3} \cdot \frac{3}{10}$$
 Multiply by the reciprocal of $\frac{10}{3}$, which is $\frac{3}{10}$.
$$= \frac{2}{3} \cdot \frac{3}{10}$$
 Divide out common factors.
$$= \frac{1}{5}$$
 Multiply.

Got it? Do these problems to find out.

Divide. Write in simplest form.

d.
$$5 \div 1\frac{1}{3}$$

e.
$$-\frac{3}{4} \div 1\frac{1}{2}$$

f.
$$2\frac{1}{3} \div 5$$

Example

4. The side pieces of a butterfly house are $8\frac{1}{4}$ inches long. How many side pieces can be cut from a board measuring 49 inches long?

To find how many side pieces can be cut, divide $49\frac{1}{2}$ by $8\frac{1}{4}$.

Estimate Use compatible numbers. $48 \div 8 = 6$

$$49\frac{1}{2} \div 8\frac{1}{4} = \frac{99}{2} \div \frac{33}{4}$$

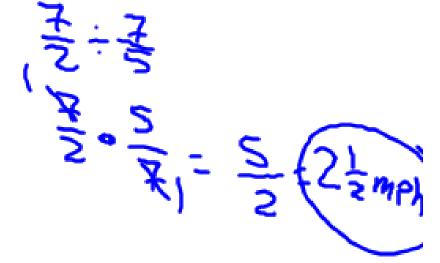
Rename the mixed numbers as fractions greater than one.

$$= \frac{99}{2} \cdot \frac{4}{33}$$
$$= \frac{\cancel{99}}{\cancel{2}} \cdot \frac{\cancel{4}}{\cancel{33}}$$

Multiply by the reciprocal of $\frac{33}{4}$, which is $\frac{4}{33}$.

$$=\frac{99}{2}\cdot\frac{4}{33}$$

Divide out common factors.


$$=\frac{6}{1}$$
 or 6

Multiply.

So, 6 side pieces can be cut.

Do Guided Practice #4 for Got It?

4. On Saturday, Lindsay walked $3\frac{1}{2}$ miles in $1\frac{2}{5}$ hours. What was her walking pace in miles per hour? Write in simplest form. (Example 4)

