Grab a Warm Up off the front table and get to work. Have your homework out and ready to check.

Classwork - Equations in y = mx form

Slope
$$\rightarrow \frac{rise}{run}$$
 Example: $m = \frac{2}{3} \rightarrow$ Go up 2, then right 3 to plot a new point

1) (-4, 5) and
$$m = -\frac{4}{3}$$

1) (-4, 5) and
$$m = -\frac{4}{3} - \frac{1}{3}$$
 2) (4, 0) and $m = 3 - \frac{3}{3} - \frac{3}{3}$ 3) (0, -1) and $m = -\frac{1}{5} - \frac{1}{3}$

3) (0, -1) and
$$m = -\frac{1}{5}$$

Find the slope of the following graphs. You will need to find two points that the line crosses.

3)
$$y = -3x + 7$$

x	-3x + 7	у	(x, y)
-1	よ(二)た	D	(-1,10)
0	-3(0)+7	4	(b, 7)
1	-3(1)+7	4	(1) 4)
3	-3(3)+7	-2	(31-2)

x	у
- 3	و
0	3-
3	-8
6	0

Make your own table and find at least three points to graph a line that represents the following equations. Find the slope of each equation.

5)
$$4x = y$$

6)
$$y = -x + 5$$

7)
$$y = \frac{3}{4}x$$

$$m = \frac{3}{4}$$

8)
$$x - 7 = y$$

×19 -4-3 04 6

9)
$$v = 2x - 3$$

9)
$$y = 2x - 3$$
 $m = 2$

10)
$$y = -4x + 8$$

$$11)\frac{1}{3}x - 1 = y$$

$$m = \sqrt{3}$$

12)
$$y = \frac{2}{5}x + 2$$

$$m = \frac{v/s}{s}$$

Charity The amount of money David can raise for the Wish Upon A Rainbow Bike-a-thon is shown in the table.

Biking Time (h), x	Money Raised (\$), y	
2	20	
4	40	
6	60	

Recall that when the ratio of two variable quantities is constant, a proportional relationship exists. This relationship is called a direct variation. The constant ratio is called the constant of variation or constant of proportionality.

Complete the steps below to derive the equation for a direct variation.

Slope formula

$$\frac{y-0}{x-0} = \pi$$

 $(x_1, y_1) = (0, 0)$ $(x_2, y_2) = (x, y)$

$$= m$$

Simplify.

Multiplication Property of Equality

p. 189

 Use the table to find the rate of change. Then write an equation in y = mx form to represent the situation.

Direct Variation

Words A linear relationship is a direct

variation when the ratio of y to x is a constant, m. We say y varies

directly with x.

Symbols $m = \frac{y}{x}$ or y = mx, where m is the

constant of variation and $m \neq 0$

Example y = 3x

m = 3

Graph

The slope of the graph of y = mx is m. Since (0, 0) is one solution of y = mx, the graph of a direct variation always passes through the origin.

Example

To determine the amount Robin earns per hour, or the unit rate, find the constant of variation.

Use the points (2, 15) (3, 22.5), and (4, 30)

$$\frac{\text{amount earned}}{\text{time}} \rightarrow \frac{15}{2} \text{ or } \frac{7.5}{1}$$

$$\frac{22.5}{3}$$
 or $\frac{7.5}{1}$

Amount Earned (\$)

30

20

$$\frac{30}{4}$$
 or $\frac{7.5}{1}$

2

4

Time (hours)

So, Robin earned \$7.50 for each hour she babysits.

Got it? Do this problem to find out.

 Two minutes after a skydiver opens his parachute, he has descended 1,900 feet. After 5 minutes, he descended 4,750 feet. If the distance varies directly with the time, at what rate is the skydiver moving?

(minutes, feet)

(minutes, feet)
$$m = \frac{3}{5 - 2}$$
 ($3, 1900$) $a_1 d_2 (5, 4750)$
 $m = \frac{4750 - 1900}{5 - 2} = 2850 = 950 + 1 / min$

Example

2. A cyclist can ride 3 miles in 0.25 hour. Assume that the distance biked in miles y varies directly with time in hours x. This situation can be represented by y = 12x. Graph the equation. How far can the cyclist ride per hour?

Make a table of values. Then graph the equation y = 12x. In a direct variation equation, m represents the slope. So, the slope of the line is $\frac{12}{1}$.

	Hours, x	y = 12x	Miles, y	
+1	0	y = 12(0)	0	417 <u>-</u>
4	1	y = 12(1)	12	17 8
•	2	y = 12(2)	24	stanc
				ă

The unit rate is the slope of the line. So, the cyclist can ride 12 miles per hour. y=mx

Got it? Do this problem to find out.

b. A grocery store sells 6 oranges for \$2. Assume that the cost of the oranges varies directly with the number of oranges. This situation can be represented by $y = \frac{1}{3}x$. Graph the equation.

Compare Direct Variations

You can use tables, graphs, words, or equations to represent and compare proportional relationships.

Table

y varies directly with x Words

Equation $y = \frac{1}{6}x$

Graph

When the x-value changes by an amount A, the y-value will change by the corresponding amount mA.

Example

The distance y in miles covered by a rabbit in x hours can be represented by the equation y = 35x. The distance covered by a grizzly bear is shown on the graph. Which animal is faster? Explain.

$$v = 35x$$

The slope or unit rate is 35 mph.

Find the slope of the graph. Grizzly Bear

$$\frac{\text{rise}}{\text{run}} = \frac{30}{1} \text{ or } 30$$

Since 35 > 30, the rabbit is the faster animal.

Got it? Do this problem to find out.

c. Financial Literacy Damon's earnings for four weeks from a part time job are shown in the table. Assume that his earnings vary directly with the number of hours worked.

LV-	X
DV-	4

Time Worked (h)	15	12	22	9
Total Pay (\$)	112.50	90.00	165.00	67.50

He can take a job that will pay him \$7.35 per hour worked. Which job has the better pay? Explain.

4. A 3-year-old dog is often considered to be 21 in human years. Assume that the equivalent age in human years y varies directly with its age as a dog x. Write and solve a direct variation equation to find the human-year age of a dog that is 6 years old.

Let x represent the dog's actual age and let y represent the human-equivalent age.

$$y = mx$$
 Direct variation

21 =
$$m$$
(**3**) $y = 21, x = 3$

$$7 = m$$
 Simplify.

$$y = 7x$$
 Replace m with 7.

You want to know the human-year age or y-value when the dog is 6 years old.

$$y = 7x$$
 Write the equation.

$$y = 7 \cdot 6$$
 $x = 6$

$$y = 42$$
 Simplify.

So, when a dog is 6 years old, the equivalent age in human years is 42.

Check

Graph the equation
$$y = 7x$$
.

The y-value when
$$x = 6$$
 is 42.

Got it? Do these problems to find out.

- d. A charter bus travels 210 miles in 3½ hours. Assume the distance traveled is directly proportional to the time traveled.
 Write and solve a direct variation equation to find how far the bus will travel in 6 hours.
- e. A Monarch butterfly can fly 93 miles in 15 hours. Assume the distance traveled is directly proportional to the time traveled. Write and solve a direct variation equation to find how far the Monarch butterfly will travel in 24 hours.

Guided Practice

 A color printer can print 36 pages in 3 minutes and 108 pages in 9 minutes. If the number of pages varies directly with the time, at what rate is the color printer printing?

(min, pages) -> (3,34) ans (9,108)

- A new compact car can travel 288 miles on nine gallons of gas. The distance driven in miles y varies directly with the number of gallons of gas x. This situation can be represented by the equation y = 32x. (Examples 2 and 3)
 - a. Graph the equation on the coordinate plane shown.
 - b. How many miles per gallon does the car get?
 - c. The distance y traveled by a hybrid car using x gallons of gas can be represented by y = 42x. Which car gets better gas mileage? Explain.

