

Sets: Natural, Whole, Integers, Rational, and Irrational

- 1) -5 1
- 2) 8.3
- 3) $\frac{3}{4}$
- 4) 0 (W, I, K
- 5) $\sqrt{472}NNRI$
- 6) -3.125 <u>K</u>
- 7) $\frac{12}{6}$ $\frac{20}{6}$ $R_1W_1T_1N$
- 8) 19 W, N, F, K
- 9) $\sqrt{7} \frac{\text{trations}}{}$
- 10) -1.54

Answer the following questions with either True or False.

- 11) All integers are rational numbers.
- 12) All integers are whole numbers.
- 13) All negative numbers are integers. False tx -1.5
- 14) All fractions are integers. 4(5e
- 15) If a decimal never ends it is an rational number. False

Sports Major League baseball has rules for the dimensions of the baseball diamond. A model of the diamond is shown.

 On the model, the distance from the pitching mound to home plate is 1.3 inches. Is 1.3 a rational number? Explain.

On the model, the distance from first base to second base is 2 inches. Is 2 a rational number? Explain.

3. The distance from home plate to second base is $\sqrt{8}$ inches. Using a calculator, find $\sqrt{8}$. Does it appear to terminate or repeat?

 To determine if the number terminates, on your calculator, multiply your answer to √8 by itself. Do not use the x² button.

Is the answer 8?

Based on your results, can you classify √8 as a rational number?
 Explain.

Real Numbers

Words

Rational Number A rational number is a number

that can be expressed as the ratio $\frac{a}{b}$, where a and b are

integers and $b \neq 0$.

Examples $-2, 5, 3.\overline{76}, -12\frac{7}{8}$

Irrational Number

An irrational number is a number that cannot be expressed as the ratio $\frac{a}{b}$, where σ and b are integers and $b \neq 0$.

 $\sqrt{2} \approx 1414213562$

Real Numbers

Numbers that are not rational are called irrational numbers. The square root of any number that is not a perfect square number is irrational. The set of rational numbers and the set of irrational numbers together make up the set of real numbers. Study the Venn diagram below.

Examples

Name all sets of numbers to which each real number belongs.

1. 0.2525...

The decimal ends in a repeating pattern. It is a rational number because it is equivalent to $\frac{25}{99}$.

√36

Since $\sqrt{36} = 6$, it is a natural number, a whole number, an integer, and a rational number.

3. -√7

 $-\sqrt{7} \approx -2.645751311...$ The decimal does not terminate nor repeat, so it is an irrational number. Got it? Do these problems to find out.

a. $\sqrt{10}$

b. $-2\frac{2}{5}$

c. √100 **= (**□

Compare and Order Real Numbers

You can compare and order real numbers by writing them in the same notation. Write the numbers in decimal notation before comparing or ordering them.

Examples

Fill in each \bigcirc with <, >, or = to make a true statement.

4. $\sqrt{7}$ $\sqrt{2\frac{2}{3}}$

$$\sqrt{7} \approx 2.645751311...$$

$$2\frac{2}{3} = 2.666666666...$$

Since 2.645751311... is less than 2.66666666..., $\sqrt{7} < 2\frac{2}{3}$.

5. 15.7% √0.02

$$15.7\% = 0.157$$

$$\sqrt{0.02} \approx 0.141$$

Since 0.157 is greater than 0.141, 15.7% > $\sqrt{0.02}$.

6. Order the set $\{\sqrt{30}, 6, 5\frac{4}{5}, 5.36\}$ from least to greatest. Verify your answer by graphing on a number line.

Write each number as a decimal. Then order the decimals.

$$\sqrt{30}\approx 5.48$$
 $6=6.00$
 5.36
 $\sqrt{30}$
 $5\frac{4}{5}$
 6
 $5\frac{4}{5}=5.80$
 5.1
 5.2
 5.3
 5.36
 5.36
 5.37
 5.36
 5.36
 5.37
 5.36
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.36
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37
 5.37

Got it? Do these problems to find out.

d.
$$\sqrt{11}$$
 $\sqrt{3}$ $3\frac{1}{3}$

d.
$$\sqrt{11}$$
 $\sqrt{3\frac{1}{3}}$ e. $\sqrt{17}$ $\sqrt{3}$ 4.03 f. $\sqrt{6.25}$ $\sqrt{6.25}$ 250% $\sqrt{3}$ \sqrt

g. Order the set $\left\{-7, -\sqrt{60}, -7\frac{7}{10}, -\frac{66}{9}\right\}$ from least to greatest. Verify your answer by graphing on the number line below.

