Vocabulary Start-Up

Numbers like 5 and -8 are called integers. An **integer** is any number from the set $\{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$, where ... means continues without end.

Complete the graphic organizer.

Real-World Link

 The bottom of a snowboarding halfpipe is 5 meters below the top. Circle the integer you would you use to represent this position?

5 or (-5

 Describe another situation that uses negative integers.

Identify and Graph Integers

Integers can be graphed on a number line. To **graph** an integer on the number line, draw a dot on the line at its location.

Examples

Write an integer for each situation.

- an average temperature of 5 degrees below normal Because it represents below normal, the integer is -5.
- 2. an average rainfall of 5 inches above normal

Because it represents above normal, the integer is +5 or 5.

Got it? Do these problems to find out.

Write an integer for each situation.

- a. 6 degrees above normal
- b. 2 inches below normal

Example

3. Graph the set of integers $\{4, -6, 0\}$ on a number line.

Got it? Do these problems to find out.

Graph each set of integers on a number line.

c.
$$\{-2, 8, -7\}$$

d.
$$\{-4, 10, -3, 7\}$$

Absolute Value

Words

The absolute value of a number is the distance between the number and zero on a number line.

Examples

$$-5| = 5$$

$$|5| = 5$$

On the number line in the Key Concept box, notice that -5 and 5 are each 5 units from 0, even though they are on opposite sides of 0. Numbers that are the same distance from zero on a number line have the same absolute value.

Examples

Evaluate each expression.

The graph of -4 is 4 units from 0.

So,
$$|-4| = 4$$
.

$$|-5|-|2|$$

 $|-5|-|2|=5-2$ $|-5|=5, |2|=2$ $5-2$

So,
$$|-5| - |2| = 3$$
.

$$|-5| = 5, |2| = 2$$

Got it? Do these problems to find out.

f.
$$2 + |-3|$$

g.
$$|-6|-5$$

Example

6. Nick climbs 30 feet up a rock wall and then climbs 22 feet down to a landing area. The number of feet Nick climbs can be represented using the expression |30| + |-22|. How many feet does Nick climb?

$$|30| + |-22| = 30 + |-22|$$
 The absolute value of 30 is 30.
= 30 + 22 or 52 The absolute value of -22 is 22. Simplify.

So, Nick climbs 52 feet.

Guided Practice

Write an integer for each situation. (Examples 1 and 2)

- 1. a deposit of \$16 _____
- 2. a loss of 11 yards ______ 3. 6°F below zero _____

Evaluate each expression. (Examples 4-6)

7. Graph the set of integers $\{11, -5, -8\}$ on a number line. (Example 3)

8. Quilding on the Essential Question Why is the absolute value of a nonzero number positive? Explain your reasoning.

Got it? Extra Practice

3)
$$|-8| \div 2 + |-5|$$

8 ÷ 3 + 5
4 + 5
(9)

4,-3,5,-9,-8,1 least to greatest -9,-8,-3,1,4,5

Homework - Unit 1 Lesson 1 Worksheet #1-15