Get out your homework for last night and have it ready to check. Start checking your answers with the key below.

Classwork - Multiplying and Dividing Monomials

Write each expression using exponents.

1.
$$3 \cdot 3 \cdot m$$

3.
$$2 \cdot d \cdot 5 \cdot d \cdot d \cdot 5$$

5.
$$g \cdot (-7) \cdot (-7) \cdot g \cdot h \cdot (-7) \cdot h$$

$$(-7)^3 \cdot g^2 \cdot h^2$$

2.
$$(\frac{1}{4})(\frac{1}{4})(\frac{1}{4})$$

$$\left(\frac{1}{4}\right)^3$$

4.
$$p \cdot (-9) \cdot p \cdot (-9) \cdot p \cdot q \cdot q$$

$$(-9)^2 \cdot p^3 \cdot q^2$$

6.
$$x \cdot \frac{1}{8} \cdot x \cdot x \cdot y \cdot \frac{1}{8} \cdot y \cdot x$$

$$\left(\frac{1}{8}\right)^2 \cdot x^4 \cdot y^2$$

Evaluate each expression.

8.
$$\left(\frac{1}{5}\right)^3$$

9.
$$\left(-\frac{3}{5}\right)^{5}$$
 $\left(-\frac{3}{5}\right)^{5}$ $\left(-\frac{243}{3,125}\right)^{5}$

10.
$$(-2)^3 + 5^2$$

11.
$$3^4 - 5^2$$

12.
$$(-2)^5 - (-2)^4$$

$$-48$$

13.
$$4^3 \div 2^3$$

14.
$$5^3 \cdot 2^3$$

15.
$$1^7 + (-3)^4$$

82

ALGEBRA Evaluate each expression.

16.
$$r^3 - s$$
, if $r = 5$ and $s = 4$ **121**

16.
$$r^3 - s$$
, if $r = 5$ and $s = 4$ **121 17.** $m^2 - n^3$, if $m = 6$ and $n = 2$ **28**

18.
$$f - g^4$$
, if $f = 3$ and $g = -5$ -622

18.
$$f - g^4$$
, if $f = 3$ and $g = -5$ **-622 19.** $(x^5 - y^2)^2 + x^3$, if $x = 2$ and $y = 8$ **1,032**

20. Replace
$$\square$$
 with $<$, $>$, or $=$ to make a true statement: $2^4 \square 4^2$. $=$

21. ISLANDS Florida has about 22 · 32 · 53 islands (over 10 acres). About how many islands is this? about 4,500 islands

Real-World Link

Arachnids Spiders in North America can range in size from 1 millimeter in length to 7.6 centimeters in length. Use the table to see how other metric measurements of length are related to the millimeter.

Unit of Length	Times Longer than a Millimeter	Written Using Powers
Millimeter	1	100
Centimeter	1 × 10 =	101
Decimeter	10 × 10 =	$10^1 \times 10^1 = 10^2$
Meter	100×10 = 1,000	10 ² × 10 ¹ = 10
Dekameter	1,000 ×10 = 10,000	103 × 101 = 10
Hectometer	10,000 ×10 =	104 × 101 = 105
Kilometer	100,000 ×10 =	10° × 101 = 10

- 1. Look at the entries in the last column. What do you observe about the exponents of the factors and the exponent of the product for each entry?
- A megameter is 100,000,000 × 10 or 1,000,000,000 times longer than a millimeter. Extend the pattern to write this number using powers.

Product of Powers

Words To multiply powers with the same base, add their exponents.

Examples Numbers

$$2^4 \cdot 2^3 = 2^{4+3}$$
 or 2^7

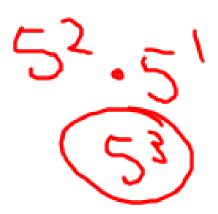
Algebra

$$a^m \cdot a^n = a^{m+n}$$

A **monomial** is a number, a variable, or a product of a number and one or more variables. You can use the Laws of Exponents to simplify monomials.

2 factors 4 factors
$$3^2 \cdot 3^4 = \underbrace{(3 \cdot 3) \cdot (3 \cdot 3 \cdot 3 \cdot 3)}_{6 \text{ factors}} \text{ or } 3^6$$

Notice that the sum of the original exponents is the exponent in the final product.


Examples

Simplify using the Laws of Exponents.

$$5^2 \cdot 5 = 5^2 \cdot 5^1$$
 $5 = 5^1$ Check $5^2 \cdot 5 = (5 \cdot 5) \cdot 5$
= $5^2 + 1$ The common base is 5. = $5 \cdot 5 \cdot 5$
= 5^3 or 125 Add the exponents. Simplify. = $5^3 \checkmark$

$$c^3 \cdot c^5 = c^{3+5}$$
$$= c^8$$

The common base is c.

3.
$$-3x^2 \cdot 4x^5$$

3.
$$-3x^2 \cdot 4x^5$$
 $-3 \cdot x^2 \cdot 4x^5$ Commutative and Associate

Commutative and Associative Properties

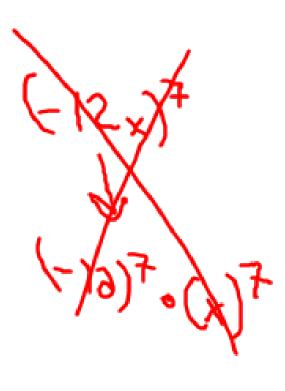
$$=(-12)(x^{2+5})$$

The common base is x.

$$-12-x7=-12x^{7}$$

12) Add the exponents.

Got it? Do these problems to find out.


a.
$$9^3 \cdot 9^2$$

b.
$$a^3 \cdot a^2$$

c.
$$-2m(-8m^5)$$

Quotient of Powers

Words To divide powers with the same base, subtract their exponents.

Examples Numbers

$$\frac{3^7}{3^3} = 3^7 - 3$$
 or 3^4

Algebra

$$\frac{a^m}{a^n} = a^{m-n}$$
, where $a \neq 0$

There is also a Law of Exponents for dividing powers with the same base.

$$\frac{5^7}{5^4} = \frac{5 \cdot 5 \cdot 5 \cdot \cancel{5} \cdot \cancel{5} \cdot \cancel{5} \cdot \cancel{5}}{\cancel{5} \cdot \cancel{5} \cdot \cancel{5} \cdot \cancel{5}} \text{ or } 5^3$$
4 factors

Notice that the difference of the original exponents is the exponent in the final quotient.

Examples

Simplify using the Laws of Exponents.

$$4. \frac{4^{8}}{4^{2}}$$

$$\frac{4^{8}}{4^{2}} = 4^{8-2}$$

The common

$$\frac{n^4}{n^4}$$

$$\frac{n^9}{n^4} = n^{9-4}$$

The common base is n.

Simplify.

base is 4.

$$= n^{5}$$

Simplify.

6.
$$\frac{2^5 \cdot 3^5 \cdot 5^2}{2^2 \cdot 3^4 \cdot 5}$$

$$\frac{2^{5} \cdot 3^{5} \cdot 5^{2}}{2^{2} \cdot 3^{4} \cdot 5} = \left(\frac{2^{5}}{2^{2}}\right) \left(\frac{3^{5}}{3^{4}}\right) \left(\frac{5^{2}}{5}\right)$$

$$= 2^{3} \cdot 3^{1} \cdot 5^{1}$$

Group by common base.

$$2^3 = 8$$

$$= 120$$

Simplify.

Got it? Do these problems to find out.

d.
$$\frac{5^7}{5^4} = 5^3$$

e.
$$\frac{x^{10}}{x^3}$$
 χ^{7}

f.
$$\frac{12w^5}{2w^7} = 6w^4$$

g.
$$\frac{3^4 \cdot 5^2 \cdot 7^5}{3^2 \cdot 5 \cdot 7^3}$$

h.
$$\frac{5^6 \cdot 7^4 \cdot 8^3}{5^4 \cdot 7^2 \cdot 8^2}$$

g.
$$\frac{3^4 \cdot 5^2 \cdot 7^5}{3^2 \cdot 5 \cdot 7^3}$$
 h. $\frac{5^6 \cdot 7^4 \cdot 8^3}{5^4 \cdot 7^2 \cdot 8^2}$ i. $\frac{(-2)^5 \cdot 3^4 \cdot 5^7}{(-2)^2 \cdot 3 \cdot 5^4}$

$$(-9)_3$$
, 3_3 , 2_3

→ 23.3.5