Get out your homework from Friday and have it ready to check. Grab a Warm Up from the table in the front of the room and get to work! We will have a Target Check tomorrow and a quiz on Friday!

Classwork - Simplifying Expressions with Negative Exponents

$$(3.5) \cdot (x^3 - x^2)$$
 $(3.5) \cdot (x^3 - x^2)$
 $(3.5) \cdot (x^3 - x^2)$

2)
$$-4ac^3 \cdot -8a^4$$

$$32a^5c^3$$

$$(5)^{3} \cdot (9^{4})^{3}$$

$$(5)^{3} \cdot (9^{4})^{3}$$

$$(5)^{3} \cdot (9^{4})^{3}$$

$$(5)^{3} \cdot (9^{4})^{3}$$

$$(5)^{4} \cdot (9^{4})^{3}$$

$$(7)^{4} \cdot (9^{4})^{3}$$

$$(8)^{4} \cdot (9^{4})^{3}$$

$$(9)^{4} \cdot (9^{4})^{3}$$

5)
$$\frac{8x^2}{4x^2}$$

Simplify.

- 1. $(7^2)^3$ 2. $(3^2)^6$ 3. $(8^3)^2$ 4. $(9^4)^2$

- 76 or 117,649 312 or 531,441 86 or 262,144 98 or 43,046,721
- 5. $(d^7)^6$

- 6. $(m^5)^5$
- 7. (h⁶)³
- 8. (z⁷)³

d 42

m ²⁵

 h^{18}

 Z^{21}

- **9.** $[(4^3)^2]^2$ **10.** $(-5a^2b^7)^7$ **11.** $(2m^5g^{11})^6$ **12.** $[(2^3)^3]^2$

 - 4¹² or 16,777,216 -78,125a¹⁴b⁴⁹ 64m³⁰g⁶⁶
- 218 or 262,144

- **13.** $(7a^5b^6)^4$ **14.** $(7m^3n^{11})^5$ **15.** $(-3w^3z^8)^5$ **16.** $(-7r^4s^{10})^4$

- $2,401a^{20}b^{24}$ $16,807m^{15}n^{55}$ $-243w^{15}z^{40}$ $2,401r^{16}s^{40}$

GEOMETRY Express the area of each square below as a monomial.

GEOMETRY Express the volume of each cube below as a monomial.

Real-World Link

Insects The table shows the approximate wing beats per minute for certain insects.

1.	Write a ratio in simplest form that
	compares the number of wing beats

for a butterfly to a housefly.

Insect	Wing Beats per Minute
house fly	10,000
small butterfly	100

- Write the ratio as a fraction with an exponent in the denominator and as a decimal.
- Complete the 1st 4 rows of the table showing the exponential and standard

forms of power of 10.

- 4. What operation is performed when you move down the table?
- 5. What happens to the exponent?
- Extend the table to include the next three entries.

Exponential Form	Standard Form
103	,
10	100
101	
100	

Zero and Negative Exponents

Words

Any nonzero number to the zero power is 1. Any nonzero number to the negative n power is the multiplicative inverse of its nth power.

Examples

$$5^0 = 1$$

Numbers

$$5^{0} = 1$$
 $x^{0} = 1, x \neq 0$
 $7^{-3} = \frac{1}{7} \cdot \frac{1}{7} \cdot \frac{1}{7} \text{ or } \frac{1}{7^{3}}$ $x^{-n} = \frac{1}{x^{n}}, x \neq 0$

$$x^0 = 1, x \neq 0$$

$$x^{-n} = \frac{1}{x^n}, x \neq 0$$

You can use exponents to represent very small numbers.

Negative powers are the result of repeated division.

Examples

Write each expression using a positive exponent.

1. 6^{-3}

$$6^{-3} = \frac{1}{6^3}$$

 $6^{-3} = \frac{1}{6^3}$ Definition of negative exponent

$$a^{-5} = \frac{1}{a^5}$$

Definition of negative exponent

Got it? Do these problems to find out.

d.
$$m^{-3}$$

Examples

Write each fraction as an expression using a negative exponent other than -1.

other than -1.

3.
$$\frac{1}{5^2}$$
 $\frac{1}{5^2} = 5^{-2}$

4.
$$\frac{1}{36}$$

$$\frac{1}{36} = \frac{1}{6^2}$$

$$=6^{-2}$$

Definition of negative exponent

Got it? Do these problems to find out.

e.
$$\frac{1}{8^3}$$

f.
$$\frac{1}{4}$$
 \longrightarrow $\frac{1}{32}$ $\stackrel{\sim}{\rightarrow}$ $\stackrel{\sim}{\rightarrow}$

h.
$$\frac{1}{27}$$

Example

One human hair is about 0.001 inch in diameter.
 Write the decimal as a power of 10.

$$0.001 = \frac{1}{1,000}$$
 Write the decimal as a fraction.
$$= \frac{1}{10^3}$$
 1,000 = 10^3 Definition of negative exponent

A human hair is 10^{-3} inch thick.

Got it? Do this problem to find out.

STEW A water molecule is about 0.000000001 meter long.
 Write the decimal as a power of 10.

Multiply and Divide with Negative Exponents

The Product of Powers and the Quotient of Powers rules can be used to multiply and divide powers with negative exponents.

Examples

Simplify each expression.

6.
$$5^3 \cdot 5^{-5}$$

$$5^3 \cdot 5^{-5} = 5^3 + (-5)$$
 Product of Powers
 $= 5^{-2}$ Simplify.
 $= \frac{1}{5^2}$ or $\frac{1}{25}$ Write using positive exponents. Simplify.

7.
$$\frac{w^{-1}}{w^{-4}}$$

$$\frac{w^{-1}}{w^{-4}} = w^{-1 - (-4)}$$
 Quotient of Powers
= $w^{(-1) + 4}$ or w^3 Subtract the exponents.

Got it? Do these problems to find out.

j.
$$3^{-8} \cdot 3^2$$

$$k. \frac{11^2}{11^4}$$

I.
$$n^9 \cdot n^{-4}$$

m.
$$\frac{b^{-4}}{b^{-7}}$$

$$\frac{1}{3} = \frac{1}{3^{4}}$$

$$\frac{1}{3^{4}} = \frac{1}{11^{2}}$$